Development of A Scalable Non-IP/Non-Ethernet Protocol With Learning-based Forwarding Method

Yasusi Kanada (Hitachi, Ltd.) Akihiro Nakao (University of Tokyo / NICT*)

* National Institute of Information and Communications Technology

Introduction

IP was originally intended to keep it simple and stupid (KISS), but it has become too complex.

◆ Especially, the combination of IP and Ethernet causes complexity.

In a NwGN project, we have developed a new protocol called the *IP Ether Chimera* (*IPEC*).

- In Japan, several projects towards new-generation networks (NwGN) have been conducted.
- This research is intended to be the first step toward development of new protocols that will replace the combination of IP and Ethernet.

Complexity of IP/Ethernet

IP/Ethernet: A Popular Combination of IP and Ethernet

- Originally, this combination was strongly necessary because Ethernet could be used only in LAN.
- ♦ Now, both can be used in WAN.
- ◆ However, this combination is still the most popular.

Both IP and Ethernet frames contain addresses: IP and MAC addresses — redundant!

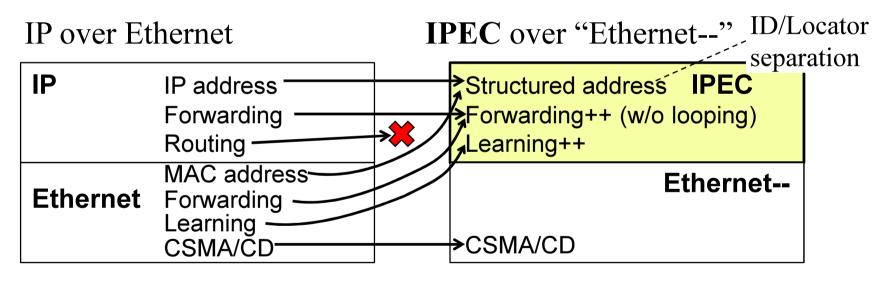
- MAC addresses were originally unchangeable, but now they can be configured by software.
- Both types of addresses are used for networking (L3 function)!

Complexity caused by this combination

- ARP is required to find the corresponding MAC address from an IP address.
 - ARP = Address Resolution Protocol.
- Other similar protocols are required in other situations: RARP, NDP (IPv6).

IPEC — Proposed Protocol

- We propose a new experimental non-IP protocol called IP Ether Chimera (IPEC).
 - We intend to remove the complexity caused by IP/Ethernet by IPEC.
- IPEC (design) consists of refined components of IP and Ethernet.
 - ♦ We reuse part of Ethernet (and IP) to build a new protocol.
- IPEC implementation consists of refined components in hardware and software.
 - We reuse Ethernet LAN cards and drivers (L2 functions) to implement a new protocol.
 - ◆ We program networking (L3) functions (currently using slow-path).

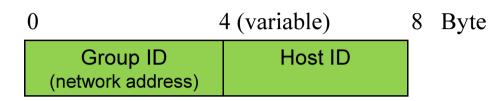

Development Goals of IPEC

- To implement a simpler forwarding function that can handle hierarchical addresses and networks including loops.
- To establish a *learning algorithm* that can be used in arbitrarily structured networks including loops.
 - This algorithm is to be achieved by extending the address learning algorithm of Ethernet switches.
- To show that a network using virtualization nodes can be used to develop and run non-IP protocols.

Protocol Design Policies

Use of structured addresses and learning

- Ordered and structured addresses similar to IP addresses are used.
- However, to keep the protocol simple, no routing protocol is to be introduced, and packets are forwarded by an Ethernet-like but extended learning algorithm.



Applicability to ID/Locator Separation

Addresses with two components, which may be interpreted as an ID and a locator may be used.

Address- and Protocol-Formats of IPEC

Address format

Host ID: Atomic identifier. 4 bytes in the current implementation.
Group ID: An identifier of a group of hosts. It may be structured.

Packet format

0	2 1	0	18	20	22 Byte
Total len	Dest addr	Src addr	Src Grp ID length	Age	Payload

Age: Something like TTL in an IP packet and is used to avoid packet looping.

Learning Algorithm of IPEC

Enhanced version of learning algorithm in Ethernet Ethernet-like learning, but to learn only groups (thus, more scalable) source group of P is not registered in the forwarding table then if Register group, group length, input port, age of P to the forwarding table (learn the packet); To learn groups when the new path is shorter than the older one or when the record is too old (should be replaced). else if age of E > age of P or E is in **registration timeout** status then age of E = age of P; port of E = port of P; timestamp of E = current time (ns);Duplicated packets are discarded (thus a loop is allowed) else if age of E < age of P or port of E != port of P then Drop the packet (the forwarding procedure is not applied); else timestamp of E = current time (ns); (C) Hitachi Ltd.

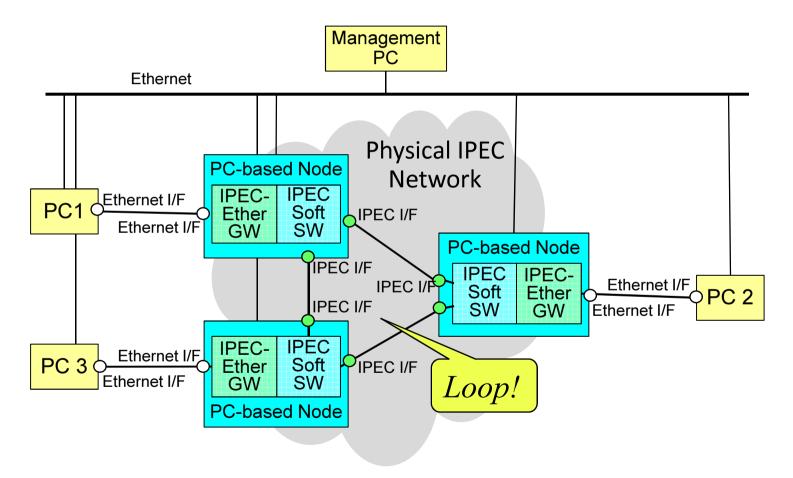
Forwarding algorithm of IPEC

Mostly the same forwarding algorithm as Ethernet

Flud (broadcast) when not yet learned (or forgot)

if destination group of P is not registered in the forwarding table or E is in **reference timeout** status then Flood the packet that is a copy of P but the age is incremented;

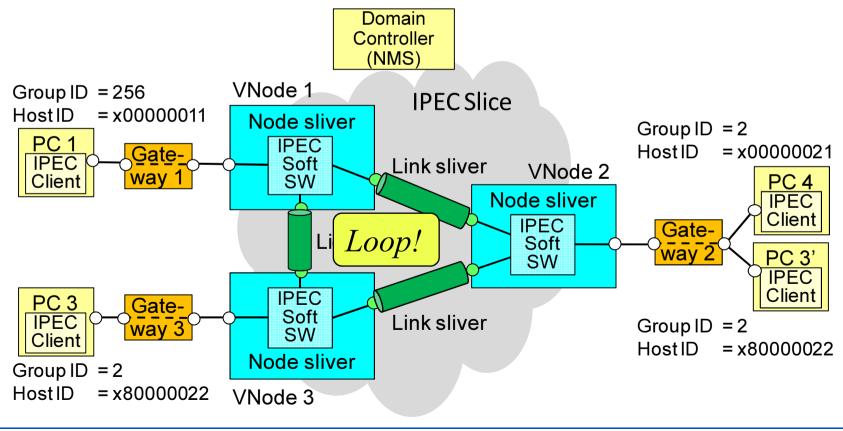
Output to learned port when already learned


else-

Output the packet that is a copy of P but the age is incremented to the port specified in the registered element;

Experiment on a LAN

■ IPEC has been implemented on a PC-based network.


◆ LAN cards are used for Ethernet--.

Experiments on A Virtualization Platform

IPEC has been implemented to the virtualization platform developed by the Virtualization Node Project (VNP).

◆ VNP has developed "VNode" (the virtualization node).

Measurements and Wide-area Experiments

Performance measurement

WTC 201

- The packet loss rate is less than 0.1% (2-Mbps UDP traffic). The performance is better than in the LAN environment.
- We have also measured round-trip time using a ping command. It is 2.8 ms on average.

Wide-area experiments and demos

- At Interop Tokyo 2010, two VNodes in Makuhari and one VNode in Hakusan. At Interop Tokyo 2011, three VNodes in Makuhari, Mejirodai, and Hakusan.
- At the 8th GENI Engineering Conference (GEC8), Nakao have introduced IPEC as an example application of the virtualization platform, and posted the demonstration video on the Web.

Summary and Conclusion

An "L3" protocol called IPEC has been developed.

- IPEC is a combination of refined protocol components derived from Ethernet and IP.
- The implementation of IPEC reuses refined hardware and software components of Ethernet.

Features of IPEC

- IPEC is more scalable than Ethernet, and a mobile group can be more efficiently learned.
- ◆ IPEC can be applied to a network with a loop.
- ♦ Group IDs can be used as locators.
- IPEC works well both in a native LAN and in a VN environments.
- IPEC is less scalable and less universal than IP, but IPEC or its successor may be used in small-scale WAN such as virtual networks.